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We explicitly calculate the free energy ~b of the general solvable N-state chiral 
Potts model in the scaling region, for T <  T,.. We do this from both of the two 
available results for the free energy, and verify that they are mutually consistent. 
If t =  T , . - T ,  then we find that (~b-~c)/ t  has a Taylor expansion in powers of 
t 2/~ (together with higher-order non-scaling terms of order t, or t log t). 

KEY WORDS: Statistical mechanics; solvable lattice models; chiral Potts 
model. 

1. INTRODUCTION 

The free energy ~bpq of the solvable chiral Potts model depends on four 
quantities: the number N of states per spin, a temperature-like parameter 
k', and explicitly on two rapidities p and q. It was first obtained in 1988, ~1) 
yielding the critical exponent e = 1 - 2 I N .  The method uses only the star- 
triangle relation for the model (ref. 2; ref. 3, pp. 83-87), showing that this 
implies partial differential equations for ~,pq, involving a single-rapidity 
function Gp. However, the solution of these equations is intricate and far 
from transparent. 

Alternative expressions as explicit integrals were obtained later ~4~ by 
solving the functional relations for the transfer matrices. {5~ A fuller deriva- 
tion is given in ref. 6, but regrettably there are inconsistencies in the choices 
of the variables Vp and [q of Eqs. (52)-(64) therein: it seems that vp and Vq 
should instead'be chosen to lie between -3rc/2 and -n/2, and that the 
result (64) is then correct for - re  <up < uq<O. The results given in ref. 4, 
with -~/2 < vp, Vq < re/2, are correct as written. 
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It is by no means obvious that the solution of ref. 1 is the same as that 
of refs. 4 and 6. It would be interest to establish this directly, so as to better 
understand the analyticity properties of Cpq, and to obtain explicit expres- 
sions for the single-rapidity function Gp. 

We have not yet succeeded in doing this, but here we do show that the 
two results lead to the same explicit result for ~kpq in the scaling region near 
criticality. In fact we work not with ~,pq, but with the quantity In gpq 
related to it by (10) and (20): In gpq= -~pq-ln(ppqDpq). 

More precisely, if k is the modulus of the model that is zero at criti- 
cality and unity at zero temperature, then near criticality k 2 is proportional 
to the temperature deviation T - T  c. The free energy has an expansion of 
the form 

In ~pq = P + Qk 2 + kZS(k 4IN) + O(k 4 log k) (1) 

(Higher terms in the expansion are of the form k 2''+4n/N, possibly multi- 
plied by log k.) Here P, Q are independent of k, while S(x) is a Taylor- 
expandable "scaling function," zero when x is zero. Here we evaluate P, Q, 
S(x) from the integral expressions of refs. 4 and 6. They are the quantities 
Ctp1,,'/aN, C~2q'/aNk 2, Ctp3q'/aNk 2 of Section 4. 

In Appendix A we check the equivalence of the various published 
forms for the critical free energy P (at which point the model reduces to the 
Fateev-Zamolodchikov model~ In Appendix B we verify that the 
method of ref. 1 gives the same results for Q, S(x): this is an extension of 
the calculation in ref. 1, where we obtained P, Q and the first nonzero coef- 
ficient in the Taylor expansion of S(x). 

One interesting point is that both P and S(x) (but not Q) depend on 
the vertical and horizontal rapidity variables up and uq only via their dif- 
ference Uq-up. In fact, S(x) is simply proportional to sin(uq-Up). Thus, 
although the chiral Potts model does not in general have the rapidity dif- 
ference property, we do regain it in the scaling region (provided we neglect 
terms analytic in k2). 

2. THE  M O D E L  

We define the solvable chiral Potts model in the usual way. ~2-6) Con- 
sider the square lattice of Jr r sites and L columns, drawn diagonally as in 
Fig. 1, with toroidal (periodic) boundary conditions. At each site i there is 
a spin a/, which takes values 0 ..... N--1 .  Adjacent spins interact with 
Boltzmann weights Wpq(Cri--cTj) for S W ~  NE edges and ff'p~(ai-a,,) for 
SE ~ NW edges, as indicated. 
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Fig. 1. 
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The square lattice (drawn diagonally) with L columns and cylindrical boundary 
conditions. 

We now define the functions W p q ( n ) ,  l~'pq(n). Let k be a real constant, 
0 < k <  1, k' =(1  - k 2 )  uz, and let og=exp(2rci/N). Let xp, yp, tp, ).p,/~p, Jp 
be complex numbers ("p-variables"), related by 

.N N N N xp + yp -- k( 1 + xp yp ), Xp yp = tp 

kx~ = 1 - k ' 2 ;  i, ky~ = 1 - k'Ap 

~ p _  ~ j p =  ~ . ~  N - l i p ,  --).pXp/yp 

(2) 

We regard N and k as fixed parameters. Then if any one of the 
"p-variables" Xp,..., Jp is given, the rest are determined, to within a finite 
number of discrete choices of Nth roots and solutions of quadratic equa- 
tions. In terms of the ap, bp, Cp, dp of ref. 2, xp =%/dp,  yp =bp/cp, 
lUd=dp/c p, Jp=-(apdp/bpcp)  N, We can regard the variables as being a 
point p on an algebraic curve (with one degree of freedom), and refer to 
this point as the "rapidity" p. The parameters tp and 2p are particularly 
significant: they are delated by 

k2t~ = 1 - k ' ( J .  a Jr ) ~ p l )  + k , 2  (3) 

As in ref. 1, we also introduce variables Up, vp related to one another 
and to those above by 

~in vp=k sin up, k ' ( ~ . p - - ) ~  -1 ) =2ke i+ cos vp 

Xp = e l(u - v)/N, y p  = ei(n + u + t,)/N tp = e i(n + 2u)/N 

k '2 _ s i n ( u p  + Vp) 
JP - 1 + k 2 - 2k cos(up - Vp) - sin(up - vp) 

(4) 
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Similarly, define "q-variables" Xq, yq,  tq, 2q, ~,lq, Jq, Uq, Vq. Then the 
Boltzmann weights are, for all integers n, 

([dp)" 'jOl Yq--(OJYP 
W p q ( n ) :  Wpq(O) -~q yp_fOJX q 

(5) 
OJXp--(.OJXq 

j= ,  Z----,oJy----~p 

In this paper we leave the normalization factors Wpq(O), ff'pq(O) arbitrary, 
except to require that they be real and positive, and have the rotation 
invariance property given below in Eq. (15). 

They have the periodicity properties Wpq(n + N)  = Wpq(n), 
l~ 'pq(n+N) = I~pq(n). Here the rapidity p is associated with the vertical 
direction, q with the horizontal. We shall need the associated quantities 

N-- I ] I/N 

D,q = { detN[ Wpq(i - j ) ]  } ,/N, 

gpq = Dpq/ppq, 

Explicit product formulas for Opq 

{N-_I~[_ I _ "1 I/N ~,,, = W g n ) ~  
t 

B~q={det~,[ff'pq(i-j)]}'/N (6) 

are given in Eqs. (3.22) of ref. 1 and 
(2.44) of ref. 5. In (23) of ref. 6 these are put into the form 

N--I 

~pq = N,/2rl - ,/N[ ( x ~  - x ~ ) ( y ~  - y~ )  ] "  - N)/2U I"[ ( tp -- ~Oitq) j/u 
j=l  

where 

(7) 

r] = e in-N- IIN+ 41/12 (8 )  

In Eq. (2.47) of ref. 5 it is remarked that 

gpq gpq = Nk '  (I - N)/,v (9) 

The partition function depends on p and q, so we write it as Zpq. Then 
the partition function and dimensionless free energy per site are 

~.l/,v ~bpq = - In ~pq (10) Kpq ~ ~pq 

(In this notation, the ~b <sq) of Eq. (3.41) of ref. 1 and the ~ of Eq. (28) of r pq 
ref. 6 are ~pq + ln[ppqfipq]; while the g(tq,  Ag) of  ref. 4 is {Kpq/(ppqDpq)} L.) 
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2.1. Physical Regime 

We can choose Xp, Xq, yp, yq, tp, tq SO that they all lie on the unit 
circle, and are arranged so that 

arg(xp) < arg(xq) < arg(yp) < arg(yq) < arg(o)Xp) ( 11 ) 

arg(tp) < arg(lq) < arg(a)tp) (12) 

Using (2), the restrictions (11) imply (12); conversely, if tp, tq satisfy 
(12), there is a unique choice of xp, xq, yp,yq that satisfies (11). 
If --2n/N<arg(tp)<O, then this choice ensures that 12p[<l; if 
0 < arg(tp) < 2rt/N, then I)~pl > 1. Similarly for tq and 2q. 

With these choices, all the Boltzmann weights Wpq(n), ~'pq(n) are real 
and positive, so the model is then physical: Zpq, Kpq must be real and 
positive; ~pq must be real. Here we shall focus our attention on this case, 
which we call the "physical regime." The parameters up, vp, Uq, l)q a r e  par- 
ticularly useful in this regime. They are then real, satisfying 

--~/2<Vp<7~/2, --~/2<Vq<~Z/2, Up<Uq(llp'-[-TC (13) 

while Jp and Jq are real and positive. 
Of course our results can be extended into the complex plane: such 

extensions can be very useful in any calculation, and vital in an under- 
standing of the analyticity properties of Xpq. 

2.2. Rotation and Inversion Relations 

An automorphism that plays a significant role in the model is p ~ Rp, 
where 

xRp = yp, YRp =COXp, ,ttRp= I/tip 
(14) 

tRp=COtp, URp---Up+~ 

We require that the normalization factors Wpq(O), ff'pq(O) in (5) satisfy 

Wq, Rp(O)= ~/'pq(O), Wq, Rp(O) = Wpq(O) (15) 

Then the weight functions and associated parameters have the properties 
(for all integers n, a, b) 

Wq, Rp(H ) = Wpq(gl), l~'rq, Rp(n) = Wpq(-n) 

Pq, Rp:ffpq, ffq, Rp:Ppq, Dq, Rp=JDpq , Oq, gp:Dpq (16) 
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gq, Rp=r Cq, Rp=gpq, Wpq(n) Wpq(n)=ppqpqp 

N--I 
Z ~'rpq (a -- C) ~-'gqp(C -- b) = DpqDpq if a = b, mod N 

c=O 

= 0 otherwise (17) 

The properties (16) ensure that replacing p, q by q, Rpis equivalent to 
rotation the lattice anticlockwise through 90 ~ This Laves the xpq and ~pq 
unchanged, so 

Xq, Rp=Kpq (18)  

In the physical regime, it follows from (11 ) that xp, Xq, yp, yq, OgXp, 
(.OXq, (OXq, 09yp, (.Oyq, O92Xp,..., 09 N- lyq form a set of 4N points ordered 
anticlockwise around the unit circle, the last element being following by the 
first. The mapping p, q ~ q, Rp simply replaces each element of this cycli- 
cally ordered set by the next. Hence xpq is unchanged if Xp, Xq, yp, yq are 
replaced by any other four consecutive elements of the set. 

Further, the relations (17) imply the "inversion relation ''18~ 

Kpq Kpq = ppq p qp Dpq Dpq (19) 

where req is obtained by analytically continuing Kpq through the inversion 
point p = q. 

2.3. The Modi f ied  Part i t ion Funct ion per Site ~pq 
An associated quantity that we shall use is 

~p,, = ~pq/( p ~qB~q) (20) 

[This is the exp(--Apq) of ref. 1 and the V(tq, 2q__) I/t- of ref. 4.] This is inde- 
pendent of the normalization factors Wpq(O), Wpq(O). Using this, we find 
that the inversion relation (19) simplifies: 

KpqKpq ~. 1 (21) 

while the rotation symmetry (18) becomes more complicated: 

e~,Rp = ( g,,qlg,,q) gpq (22) 
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3. EXPRESSIONS FOR ft,,q 

For IGI < l, IGI < 1, and - 2 n / N <  arg(tq) < 2n/N, defined functions 
A(O), Apq, Bpq by 

A(O) = [(1 - 2k' cos 0 + k'2)/k 2 ] I/N (23) 

-I  ~J'~'~ l l~2p e ' - -~+  2pe i~ N- I Apq (2,~) j~=l ( N - j )  ln[d(O) -eOJtq] dO (24) 

B,q=(8712)-lI~nI~xlq'~'pei~162 
1-- 2pe i~ 1 2qe i4 

N--I 
x ~. (N-2j)ln[co-;/zA(o)--wJ/ZA(r (25) 

j = l  

Then Bqp = --Bpq and in ref. 6 we show that 

Nlngpq= [ ( N -  1)/2] ln(2q/2p)+A,q--Aqp--Bpq (26) 

provided [2p[ < 1, [2q[ < 1, - 2~z/N arg tp < 0, and - 2n/N arg tq < O. 
We can write these integrals in various ways, some of which manifest 

the fact that  gpq is real in the physical regime. In particular, if we introduce 
the Fourier transform funtion 

co_svpf ~ exp[fl+ 2fl(up+ix)/n] dx 
Gp(fl) = z~ J_o~ sin(up+iX)(1 + k  2 sinh2x) l/-~ 

then in ref. 6 it is shown that 

(27) 

sinh ,28, 

where P indicates the principal-value integral and 

Epq(fl) = [ Gp(fl) Gq( - f l )  + cosech'-(fl) ] 

x [N  sinh fl c o s h ( N -  1 )fl - sinh Nil] 

+ N s i n h ( N -  I ) fl[ Gp(fl) + Gq( - fl) ] (29) 

provided both u~, Uq lie in the interval ( --re, 0), and Vp, Vq in the interval 
( - n / 2 ,  0). [There is some confusion in Eqs. (52)-(65) of ref. 6 as to the 
choice of vp, Vq: if we choose them as we do here, then the definition 
of Gp(fl) in Eq. (55) of ref. 6 has to be negated, giving (27). The result 
reported in ref. 4 is correct as written. ] 
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We can extend these results for Kpq t o  the remainder of the physical 
regime, either by analytic continuation (taking care to form the correct 
continuation when, for instance, a pole crosses a contour of integration), or 
more easily by using the rotation symmetry (18), (22). Boundary cases can 
be handled by taking an appropriate limit. 

It is readily seen (by negating fl) that the right-hand sides of (26) and 
(28) are antisymmetric functions of p and q, in argument with (1). Further- 
more, it has recently been verified explicitly that the analytic continuation 
of (26) does indeed satisfy the rotation symmetryJ 91 

4. THE SCALING REGION 

At k = 0  the model becomes the critical Fateev-Zamolodchikov 
model. ~7) Here we are interested in the behavior as this critical limit is 
approached. One can verify that the Boltzmann weights Wpq(n), [~"pq(n) are  
even functions of k, expandable in powers of k 2, so k 2 plays the role of the 
temperature deviation from criticality T c -  T. 

At least for N even, some of the neglected terms in the expansion also 
contain a factor log k. To avoid irritating repetition, if we say that we are 
neglecting terms of order k", then we are also neglecting terms of order 
k" log k. 

Let 

,: [ 
z ~  1 + k '  - (l +k ' )  2 - e x p  - 2  arcosh (30) 

Then by integrating the integrand in (27) around the rectangle with 
vertices - S ,  S, S + i ~ ,  - S + i ~ ,  allowing for branch cuts from in~2 
_arcosh(1/k) to ilr/2-4- oo and the pole at i(n + up), and letting S---, 0% we 
can rewrite (7) as 

Gp(fl) = [ 1 + Hp(fl) ] /cosh fl (31) 

where 

Hp(fl) - i cos vp eptj +2,,p/.)[ Vp(fl) - V*(fl)] (32) 
7~ 

~--1.1--ifl#rDiu p ~ t -fl#t dt v,(p) 
-'" "o " Jo (1-t-e2iUpZot)[(1-t)(1 - - Z o t ) ]  1/2 

(33) 

and V*(f l )  is defined similarly, but with i replaced by - i .  [Thus it is the 
complex conjugate of Vp(fl) if k, Zo, Up, and fl are real.] Vp(fl) and 
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V * ( - f l )  are bounded analytic functions of  fl on the real axis and in the 
UHP.  One can verify by direct integration that  

2 cos Vp Vp(O) = 2iVp + In Jp (34) 

Similarly, 2 cos Vp 1I*(0) = -2ivp + In Jp, and hence Gp(O) = 1 + 2vp/rc. 
Substituting (31) into (29), we obtain 

3 

gpq(fl) = s (J) Epq(fl) ( 3 5 )  
j = l  

where 

(1) Nsinh f lcosh(N+l) f l - - s inhNf lcosh2f l  
Epq (fl) - sinh 2 fl cosh 2 fl 

(2) ( N -  1) sinh Nfl[Hp(fl) + Hq(-f l )]  (36) 
E~q (fl) - cosh 2 fl 

(3) Epq (p)  - [ N  sinh p c o s h ( N -  1),8 - sinh Nil] Hp(p)  Hq(--fl) 
cosh 2 fl 

As k ~ 0, z 0 also tends to zero (to leading order it is k'-/4), so V*(p) ,  
Vq(-fl), V*(- f l ) ,  Hp(fl), Hq(- f l )  all become small. The equations are 
therefore in a form where we can examine the critical behavior.  To  do this, 
it is convenient to consider separately the contributions to the RHS of (28) 
of the terms E ~), E c-~, E (3~. 

4.1. Contribution from E ll) 

The term E ~) in (36) gives a contr ibution to (28) of  

fo~ E(1)(B~ C~p~q)= p eq ,,-, exp[Zfl(uq- up)/r~] dfl (37) 
- o o  fl sinh Nfl 

This is independent of  k and is the only nonzero contr ibution in the limit 
k--* 0. (Jp and Jq both  tend to 1.) It is therefore the free energy 4 N l n  g:q 
of the Fa teev -Zamolodch ikov  model  (7) [ref. 1, Eqs. (6.11) and (6.15)]. 

We now donsider the other contributions to (28). 

4.2. Contributions from ( N - 1 )  In(Jq/Jp) and E (zl 

The terms arising f rom E f2) a r e  linear in the V's and each correspond- 
ing integral can be closed a round either the upper  or lower half-plane. 
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Because  E ~2) contains a factor sinh fl, the only singularities are single poles 
at f l = 0  and double poles at f l=  i ( 2 n -  1)n/2 (n an integer). The poles at 
f l=  0 given a combined contribution to (28) of 

( N - l ) c o s v p [ V p ( O ) + V ~ ( O ) - V q ( O ) - V ~ ( O ) ]  (38) 

Using (34), this is - ( N - 1 ) ] n ( J q / J p ) .  Thus the contribution of the poles 
at f l = 0  precisely cancels the ( N - 1 ) l n ( J q / J p )  term in (28). This ensures 
that there are no terms of order k (or of higher odd powers of k) in the 
expansion of (28). 

The next highest order contribution comes from the poles at 
f l= +_in~2 in E (2), and is of order k 2 (or, because the poles are double, 
k 2 log k). To this order we can set z 0 = 0 inside the integrand of (33), giving 

Vp( fl ) = 2 k -  1 z~-iP/'~ eiUp B( 1 - ifl/n, 1/2) (39) 

where B(x, y) = l'(x) 1-'(y)/(x + y) is Euler's beta function. 
We can also take cos vp in (32) to be unity, giving a contribution to 

(28) of 

Spq + S*q - Spq - S*q (40) 

where 

Spq ~- 2(N-n..........~l ) ei,, p p ~oo_~ z~-~"P/"e ptl + 2,,q/,~) B~l-~,~)dfl/ " (41) 

and S*q is the "complex conjugate" obtained from it by replacing i by - i ,  
wile leaving k, Zo, up, Uq, fl unchanged. 

The function B( 1 -Jr~n,  1/2) is bounded and analytic in the upper half 
fl plane, so the integral can be closed round the UHP, and the contribution 
in which we are interested comes from the double pole at fl = in~2. We can 
break the residue at this pole into two parts: 

(a) The part coming from the first derivative at fl = in~2 of the factor 
fl-~z~-~P/'~ePB(1-i~/n, I/2). This depends on the rapidities p and q only 
via a factor exp[i(up + Uq)]. It is therefore symmetric in p and q, so cancels 
out of (40) and can be ignored. For this reason there are no k 2 log k terms 
in the contribution. 

(b) The part coming from the first derivative of exp(2flUq/n). To 
leading order (setting z0 = k2/4), this contributes of Spq a term 

--2(N--  1) k27~-2Uqe itu~+uq) B(3/2, I/2) (42) 
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Noting that B(3/2, 1/2)= rr/2, it follows that the contribution to (28) 
of the terms of order k 2 coming from E (2) is 

C~pq ) = - 2 ( N -  1) k2rt-](Uq- up) cos(up + Uq) (43) 

There are other terms coming from the expansion of the integrand in (33) 
in powers of Zo, and from the poles at fl = 3irr/2, 5in/2, etc. These are of 
order k 4, k 6 ..... 

4.3. Contr ibut ions  f rom E (3) 

Substituting the forms (32) of Hp(]~), Hq(--fl) into (36), we can break 
(3) E~pq (fl) into two parts, one containing Vp(fl) Vq(-f l)  and V*(fl) V*( - f l ) ,  

the other containing Vp(fl) V* ( - f l )  and V*(fl) Vq(-fl).  
The first involves k and Zo only via an external factor zo/k 2, and the 

Zo inside the integrand in (33). The corresponding contribution to (28) can 
therefore be expanded in powers of k'-. At first sight there is a leading term 
of order k'-, but it is an integral over fl from - oo to oo of an odd function 
of fl, so it vanishes. The surviving terms are at most of order k 4. 

Now consider the term containing Vp(fl) V*( - f l ) .  Ignoring terms of 
relative order k'-, we can replace Hp(fl)Hq(--fl) in Eq. (36) for E 13) by 
exp[2fl(up-uq)/zr] Vp(fl)Vq ( - f l ) /n - ,  Le. [usmg (39)] by 

(2/nk)2z2-2ia/r~e2p(up-"q)/nei(Ut'-"q) B(I -- ifl/rr, 1/2) 2 (44) 

The resulting contribution to the integral in (28) can be closed around the 
UHP, the integrand being analytic except for poles arising from the factors 
sinh Nil, cosh 2 fl in the denominator. 

The factor z 2-zia/'~ ensures that (for k small) the dominant contribu- 
tion to the integral comes from the poles closest to the origin, i.e., fl = inj/N 
for j =  1, 2 ..... where sinh Nfl vanishes. (There is no pole at the origin.) 
Noting that sinh Nfl is then zero, we can replace the definition (36) of E 13) 

by N tanh fl cosh NflHp(fl) Hq(--fl). The pole at fl = ircj/N therefore con- 
tributes to (28) a term 

tan Zo+ 2j/'V ei(Up-"q) B 1 + N'  (45) 
/g 2j.k-""" ~ 

The term' containing V*(fl) Vq(-f l)  is the "complex conjugate" of 
this, so altogether (again taking Zo = k2/4) we obtain a contribution to (28) 
of 

Nk ~ up) 21 j_ ,  /'k'~ 4j/N [nj'~ . j 1"~ 2 C(3)= /r 2 sin(uq-- _pq = [ ~ )  tan ~ ) B  1 + ~ ,  ~/] (46) 
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If N is even, a problem arises when j is an odd multiple of N/2 (due 
to the integrand having a double pole). However, we are neglecting terms 
of order k 4, so should restrict the sum in (46) to 1 <~j<N/2, which 
removes the difficulty. 

Ignoring terms of order k 4 or smaller, we thus have 

4Nlnffpq= (i) (2) 4_ C{3) CIpq + C L q  __ - -  pq (47) 

As discussed in the introduction, Ctp~q ) is the contribution of the critical free 
energy (i.e., the Fateev-Zamolodchikov model) and is given by (37); Ctp 2~ 
is the first analytic correction, being proportional to k 2 and given by (43); 
Ctp3q I is the scaling contribution, given by (46). Note that Ctp3q J, consider as 
a function of k and the rapidity variables Up and Uq, has the form 

C~3q)=k2sin(uq-up)F(k 4/N) (48) 

where F(x) is a Taylor-expandable function of x. [ I f  we truncate the series 
in (47) to 1 <~j<N/2, as remarked above, then it is a polynomial.] 

APPENDIX A 

Here we consider the critical k ~ 0 limit, when the model reduces to 
that of Fateev and Zamolodchikov, and show that our expressions (28), 
(37) then agree with previous results in refs. 7 and 1. 

From (2)-(4) and (13), in this limit Vp=Vq=O and we can choose 
pp=lZq= 1 Then (5) gives 

Wpq(n) = Wpq(O) f i  s in [=j /N-  (~ + a)/2N] 
j= i sin[ zq/ N -  (re - o0/2N] 

I, Vpq( n ) = ff'pq( O ) f i  s i n [ n ( j -  1) /U+ ot/Z U ] 
j = l sin [ zcj/N - ot/2N ] 

(A1) 

where o~ = Uq-  Up. These formulas agree (to within a normalization) with 
those of Fateev and Zamolodchikov. (7) Also (6), (7) give 

N-- I  

,Opq/ppq = N'/z(2 sin =/2) r m / N  I I [2 sin(a + nj)/N] j/N 
j = l  

(A2) 

For 0 < a, b < n, one has the formula 

I-sina] foo e-t(e2b/~ e2at/~)dt 
n [ si--~J = p _~ 2t sinht 
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from which one can deduce, for 0 < ~ < n, that 

4 N l n /  ppq ] = P  I ~ e2~P/n 
[ Wpq(O)J -oo ,8 si--~-U,8 g](,8) d,8 

[ /Spq ] e 2~p/" 
4 N l n [  l,Vpq(0)J = 2 N l n U +  P I?~ ,8  sinh Nfl 

where 

g 2( ,8 ) d,8 

(A3) 

2 cosh 2,O sinh N,8 N cosh 2N,8 
gl(fl) - sinh 2 2,8 cosh N,8 sinh 2,8 

(A4) 
Ne 2(N- I)p 2 sinh N,s cosh 2,8 Ne (N-I )p 

g'-(,8) - sinh 2,8 cosh N,8 § sinh 2 2,8 sinh fl 

From (20), (28), and (37), for k = 0  our result is 

[_ ppqDpqJ ,8 sinh N,8 pq (,8) d,8 

Using (A3), we can write this written as 

In - xJ-q_ ] 1=~In N +  ~ e'~'/# 
Wpq(O) Wpq(0) J ~4N,s  sinh Np  h(,8) d,8 

(A5) 

where 

h(,8) (') =Epq (,8) "l- gl(,8 ) "~'- g2(~) 
= _ N e _  p s inh (N-  1 ),8 sinh N,8 

cosh 2 ,8 cosh N,8 
(A6) 

The variables up, Uq in ref. I are the same as those here. Also, Apq, 
Wpq(l, 1), ff'pq(1, 1), f( t tq--t tp) therein are our expressions - l n  gpq, 
Wpq(O)/ppq, ff'pq(O)/~6pq, ~Opq/fipq. Thus in our present notation the result 
(6.11), (6.15) of ref. 1 (for k = 0 )  is 

[ ,=fo 
] ~ sinh ~.x sinh(~ - e)x s inh (N-  1 ) gx 

In dx (A7) 
Wpq(O) Wpq(O)J x cosh z rex cosh Nrtx 

Setting x = fl/n, we can write this as 

ln[  x__p_q_ .] =~o~ [ cosh f l -  cosh(20~/rc - 1 )fl] s i nh (N-  l)fl 

wpq( o ) Wpq( O ) J _o, -N7 a,8 
(A8) 
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Noting the evenness of the integrand and that 

f 
oo s i n h ( N -  l)fl 
- oo fl ~ "~os'-~fl dfl = 2 In N 

we see that this is the same as our result (A5). 
It is also the same as Eq. (12) of ref. 7, provided we normalize so 

that Wpq(O)= ff'pq(0)= 1. [In fact it appears from Eq. (2) of ref. 7 that 
~-~n=o Wpq(n)/N and Fateev and Zamolodchikov normalized ~pq = N- 

~pq = Z,'v-= ol ff'pq(n)/N to be unity, which means that their "specific"_ free 
energy should be -ln(xpq/~pq(pq). Since W,,q(O)Wpq(O)/~pq~pq=N, this 
implies that the RHS of Eq. (12) of ref. 7 should contain an additional term 
- I n  N.] 

APPENDIX B 

Here we use the alternative method of ref. 1 to evaluate the free energy 
to the same order as in (47). In particular we rederive the contributions 
Ctpq ) and C~p3,]. (This method does not immediately give Ctplq ~, which plays 
the role of an undetermined constant of integration, independent of k and 
depending on up and Uq only via their difference Uq-  up.) The results agree 
(as of course they should) with (43) and (46), and are consistent with (37). 

We denote the equations of ref. 1 by the prefix I. The summand in 
(1.5.37) is unchanged by j ~ N - j  and when k is small the integral is 
dominated by the region where ! is of order k, hence 

2 (k )=  n3N,  - ~ ( N - 2 j ) s i n  2 
j = l  

f] 2 
x (k2+lz)zK~2j_A, v2N(l)ldl (B1) 

When k is small, from (I.5.7), 

K,(k)  = �89 + 1/2, n + 1/2) 

while from (3.194.6) of ref. 10, 

~? l(4J-m/lVdl ( N -  2j)~z 
(k 2 + lZ) 2 _ k4~J- m/N 2N  sin(2nj/N) 

so (B1) becomes 
N - - I  

2 ( k ) = -  ~ )'jk 4(j-'v)/~r (B2) 
j = l  
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where 

yj = [ (N-- 2j)2/n2N 3 ] tan(hi/N) B(j/N, j/N) 2 

From (I.5.6), neglecting terms of relative order k 2, it follows that 

(B3) 

( ~)N-1 N2y.k2.-2+4j/Nj 
(~ . (k)=B n+~,n+ ~ 8(N-2j ) (2 j -N+2nN) 

j = l  
(B4) 

From (1.5.5), (I.4.13), (I.4.12), and (I.6.9), it follows that, to this order in 
each Fourier coefficient, the functions xp, yp of ref. 1 are 

xp = -Ho--2  ~ H,(k) cos 2nup 
n ~ l  

N -  1 k2up + 2 ~ H.(k) sin 2nup 
Y p  = ~  

(B5) 

where 

N • I  N2yjk2.+4j/N .-1 j + m N  
H.(k) = (-- 1)" ~ - , _ - 5 2 - , z  1-'[ j=~ z t~v--zj) , ,=o2j+N+2mN 

(B6) 

Substituting these results into (1.3.45) and (I.3.46) and ignoring (for 
given up and Uq) contributions t o  Apq of order k 4 o r  smaller, we need only 
retain the coefficient H~(k) and the term in yp linear in up, giving 

~ - (1)4-D(2)+Dr (B7) -4NApq = 4N In K p q  - -  O p q  _ _ p q  _ _ p q  

where D (1) is a function of Uq- up only, independent of k, but is otherwise p q  

at this stage undetermined, and 

D ~2) - - ( 2 / n ) ( N -  1 ) k2(uq - up) cos(up + Uq) (B8) p q  - -  

k 

(3)_ --16Nsin(uq--Up) fs l-lHl(l) dl D p q  - 

N - - I  

= N  4 s in(uq-  up) ~ jyjk2+4J/N/(N 2-4j2) 2 (B9) 
j = l  

Noting (using formula 8.335 of ref. 10) that 

B(x, x) = (2x + 1 ) B(1 + x, 1/2)/(4Xx) (BI0) 

822/82/5-6-2 
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it follows that 

Dpq(3) _- (Nk2/n2) sin(uq - up) 
N--I 

j - ' (k/2)4J/Ntan(~zj/N) B(1 +.fiN, 1/2) 2 

j=I (Bl l )  

If we truncate the sum in (B9) to only the j =  1 term, then we regain 
the result (I.6.11). 

We want to assert that the main result (47) of this paper is consistent 
with the result (B7) of this appendix, more strongly that __pqC (i)  ---- Dpqti) for 
i = 1, 2, 3. Certainly C I~) is a function of uq - up only, independent of k, and --pq 

- D ~2~ As so has the form allowed for D I~ Also, from (43) with (B8), C~pq I - pq. pq" 
written, the sums in (46) and (Bl l )  have different upper limits, but, as 
remarked after (46), to order less than k 4 both should be restricted to the 
range 1 ~<j < N/2. (This restriction also removes the problem that many of 
the summands of this appendix are undetermined or infinite for j = N/2.) 
Then we obtain C ~3~_ p q  ---- Dpq(3). Thus (7) is consistent with (47). 
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